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1. Introduction

Technical knowledge management (TKM) involves capturing, organizing, and disseminating complex engineering and scientific
information to support innovation and operational efficiency. Traditional TKM systems, reliant on manual documentation and
static databases, struggle with scalability and accessibility, especially in data-intensive industries. Large Language Models
(LLMs), such as GPT-4 and LLaMA, offer transformative solutions by automating knowledge extraction, summarization, and
query resolution. Research indicates that 82% of engineering firms adopting LLMs report a 25% reduction in documentation
time. This article examines LLMs’ applications in TKM, their methodologies, benefits, challenges, and future prospects,
emphasizing their role in enhancing productivity and decision-making.

2. Background and Related Work

2.1 LLMs in Knowledge Management

LLMs are advanced neural networks trained on vast text corpora, capable of understanding and generating human-like text. In
TKM, they excel at processing unstructured data, such as technical reports, manuals, and design specifications. Techniques like
fine-tuning and RAG enable LLMs to adapt to domain-specific contexts, improving accuracy in technical queries.

2.2 Applications in Technical Domains

LLMs have been applied to automate documentation in aerospace, generate code snippets in software engineering, and provide
real-time troubleshooting in manufacturing.
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For example, LLMs can summarize 500-page technical
manuals into concise reports, reducing processing time by
40%. Their ability to handle multimodal inputs (text, code,
and diagrams) further enhances their utility.

2.3 Limitations of Traditional TKM

Traditional TKM systems face issues like information silos,
outdated documentation, and inefficient search mechanisms.
Studies show that engineers spend 20-30% of their time
searching for relevant information, highlighting the need for
advanced tools to streamline knowledge access.

3. Methodology

3.1 LLM Techniques for TKM

e Fine-Tuning: Adapts LLMs to specific technical
domains using curated datasets, improving accuracy by
15-20% in specialized tasks like patent analysis.

e Retrieval-Augmented Generation (RAG): Combines
LLMs with external knowledge bases to provide
contextually relevant responses, reducing hallucination
rates by 30%.

e Prompt Engineering: Crafts precise prompts to elicit
accurate responses, crucial for tasks like troubleshooting
complex machinery.

e Embedding Models: Convert technical documents into
vector representations for efficient semantic search and
clustering.

3.2 Integration with TKM Systems

LLMs integrate with existing TKM platforms, such as
Confluence or SharePoint, to automate content creation and
retrieval. For instance, LLMs can generate API
documentation from codebases, reducing manual effort by
35%. They also support natural language interfaces for
querying databases, improving accessibility for non-technical
users.

3.3 Data Requirements
LLMs require high-quality, domain-specific data to perform
effectively. Techniques like transfer learning and low-rank
adaptation (LoRA) reduce data needs from thousands to
hundreds of samples, making LLMs viable for niche
engineering applications.

4. Applications

4.1 Aerospace

LLMs streamline maintenance documentation and fault
diagnosis. For example, an LLM trained on aircraft
maintenance logs can predict component failures with 90%
accuracy, reducing downtime by 15%.

4.2 Software Engineering
In  software development, LLMs generate code
documentation, debug scripts, and answer technical queries.
Tools like GitHub Copilot, powered by LLMs, increase
coding efficiency by 20%.

4.3 Manufacturing

LLMs support TKM by generating real-time troubleshooting
guides and optimizing supply chain documentation. A study
showed that LLM-assisted TKM reduced manufacturing
errors by 10%.
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5. Benefits

e Efficiency: Automates documentation and retrieval,
saving 20-30% of engineers’ time.

e Accuracy: Fine-tuned LLMs provide precise, context-
aware responses.

e  Accessibility: Natural language interfaces enable non-
experts to access technical knowledge.

e Scalability: Adapts to diverse industries with minimal
retraining.

6. Challenges and Limitations

6.1 Data Privacy

Technical data often contains proprietary or sensitive
information. Ensuring LLMs comply with regulations like
GDPR is critical, as 60% of engineering firms cite privacy as
a barrier to adoption.

6.2 Model Bias

LLMs can inherit biases from training data, leading to
inaccurate or unethical outputs. For instance, biased
maintenance recommendations could prioritize costly repairs
over efficient solutions.

6.3 Computational Costs

Training and deploying LLMs require significant
computational resources, with costs estimated at $50,000-
$100,000 for enterprise-scale models, limiting adoption in
smaller firms.

7. Future Directions

o FEthical LLMs: Develop bias-mitigation techniques to
ensure fair and accurate outputs.

e Lightweight Models: Create efficient LLMs for
resource-constrained environments, such as embedded
systems.

e Multimodal Integration: Enhance LLMs to process
diagrams and 3D models alongside text.

e Standardized Frameworks: Establish  industry
standards for LLM deployment in TKM to ensure
interoperability and compliance.

8. Conclusion

Large Language Models are revolutionizing technical
knowledge management by automating documentation,
enhancing search capabilities, and supporting decision-
making across industries. Despite challenges like data
privacy and computational costs, advancements in fine-
tuning, RAG, and prompt engineering are making LLMs
increasingly viable for technical applications. Continued
research and ethical considerations will drive their adoption,
ensuring they meet the demands of modern engineering
environments.
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