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Introduction

In the energy sector, maintenance is very important. It includes oil and gas refineries, power plants, and renewable energy
installations. Good maintenance keeps these buildings safe and makes sure that the assets are always available. Bad maintenance,
on the other hand, can cause a lot of downtime and lost money. Research indicates that improper or reactive maintenance
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strategies can diminish overall production capacity by 5-20%
(Moleda et al., 2023) 1. In industries such as oil refining and
power generation, maintenance costs constitute a significant
portion of operational expenses—occasionally comparable to
fuel costs—and maintenance personnel may account for up
to 30% of the total workforce (Garg & Deshmukh, 2006) [,
These numbers show how high the stakes are: even small
equipment failures in power systems can cost a lot of money
for both producers and consumers (Moleda et al., 2023) [,
So, energy facilities can get a lot out of improving their
maintenance plans to reduce downtime, extend the life of
their equipment, and make sure operations are safe.

The problems with siloed maintenance strategies: In the past,
companies have used different maintenance methods in silos.
For example, they might have strict schedules for preventive
maintenance (PM) or only do repairs after something breaks
down (a "run-to-failure™ approach). Predictive maintenance
(PdM), also known as condition-based maintenance (CBM),
has become popular in the last few years. It uses real-time
data and analytics to guess when something will break. But a
lot of businesses use these strategies on their own instead of
working together. Using applications in isolation can lead to
less than ideal results. For example, a preventive schedule
might not take into account real-time machine condition data,
or a predictive system's suggestions might be ignored because
there aren't enough resources (Yildiz & Soylu, 2023) [,
Surveys show that a large part of the industry still relies
heavily on reactive maintenance. For example, almost half of
the companies that were surveyed said they relied heavily on
run-to-failure methods (Pinjala et al., 2006) [, This
fragmentation leads to missed chances to find a balance
between long-term planning and short-term responsiveness.
Reasons to use an integrated approach: An integrated
maintenance approach is necessary because it is clear that
treating predictive, preventive, and corrective maintenance as
separate areas has clear limits. The main idea is to connect
these three methods so that they work together in one
decision-making framework. An integrated approach
promises to fix the problems with each individual strategy.
For example, predictive maintenance can cut down on
unnecessary preventive tasks by showing when equipment
really needs attention. Preventive maintenance can
systematically address known wear mechanisms to avoid
failures that predictive analytics might miss. Finally, a good
corrective plan makes sure that recovery is quick when
unexpected failures do happen. These things work together to
make a strong maintenance plan. The motivation goes beyond
saving money. More reliable systems and fewer downtimes
make energy supply more stable and operations safer, which
helps long-term sustainability goals. This is especially
important because the energy sector has more complicated
and spread-out assets, like wind farms and solar installations,
where it is hard to plan maintenance and downtime directly
affects energy availability and revenue (Moleda et al., 2023)
[6]

Research Objectives and Significance: This study seeks to
create and assess a comprehensive maintenance decision-
support framework for facilities in the energy sector. The
main goals are to: (1) come up with a unified methodology
that combines predictive, preventive, and corrective
maintenance into one framework; (2) find decision-support
models (like optimization algorithms and Al-based
prognostics) that work best with this integrated approach to
improve reliability and cost-effectiveness; and (3) figure out
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how this kind of integration can make energy facilities more
sustainable and safe in the long run. The study enhances both
theoretical frameworks and practical applications by
addressing these objectives. The importance lies in providing
energy facility managers with a structured approach to
optimize uptime and reliability while managing maintenance
budgets. This essentially aligns maintenance management
with the strategic asset management principles of standards
such as I1SO 55000 (ISO, 2014), which stress the importance
of balancing value, risk, and performance.

Research Questions: Based on the above, the study is guided

by the following research questions:

e RQ1: How can predictive, preventive, and corrective
maintenance be unified into a cohesive framework for
energy sector facilities?

e RQ2: What decision-support models (e.g., analytics,
optimization algorithms) best optimize asset reliability
and cost-efficiency under an integrated maintenance
approach?

e RQ3: In what ways can the integration of maintenance
strategies improve long-term sustainability, operational
safety, and overall effectiveness in energy facility
operations?

The paper aims to illustrate the viability and benefits of an
integrated maintenance methodology by addressing these
inquiries. The rest of this paper is set up like this. Section 2
looks at important research on decision-support frameworks
and maintenance strategies in the energy sector. Section 3
shows the main ideas behind the proposed integrated
approach. Section 4 explains the research method, including
where the data came from and what tools were used to
analyze it. Section 5 gives examples of how the framework
can be used by looking at a specific energy facility. Section 6
shows the results and a comparison of them. Section 7 talks
about what the results mean, and Section 8 ends with a
summary, limitations, and suggestions for future research.

Literature Review

Maintenance Strategies in the Energy Sector

An Overview of Preventive, Corrective, and Predictive
Maintenance: People usually group maintenance strategies
into three types: preventive, corrective, and predictive.
Preventive maintenance (PM) is the planned and scheduled
servicing of equipment at set times (like on a calendar or
based on how often it is used) to keep it from breaking down
(GFMAM, 2021) ™, The goal of PM is to stop things from
getting worse and lower the chance of failure by doing
regular inspections, replacing parts, lubricating, and other
tasks before a problem becomes clear. This approach has
been a common practice in many fields for a long time. For
instance, equipment manuals often suggest doing major
repairs every X hours of use. Preventive maintenance makes
equipment last longer and stops some unplanned downtimes
by fixing wear-out failures before they happen. However, if
the intervals are too conservative, it can lead to "over-
maintenance" (Moleda et al., 2023) [¢], There is also a chance
that intrusive maintenance will cause problems or that
resources will be wasted on parts that still have a lot of life
left.

Corrective maintenance (CM) is mostly reactive; repairs or
replacements are done after a failure is found to get the asset
back to working order (GFMAM, 2021) 1. In a corrective or
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"run-to-failure" strategy, maintenance costs are only incurred
when something breaks, which could save money on
maintenance in the short term. But unplanned corrective
events can cause big production losses and other damage. In
the energy sector, a corrective-only approach is generally
impractical for critical assets because unexpected outages can
be extremely costly (e.g., an hour of downtime in oil & gas
or power generation can cost hundreds of thousands of
dollars) and safety incidents may occur if failures are not
anticipated. In fact, research shows that only using reactive
strategies usually makes maintenance costs go up because of
emergency repairs and lost profits (Thomas & Weiss, 2021)
(20 However, a certain level of corrective maintenance is
inevitable, as not all failures can be anticipated or averted,;
consequently, it remains a crucial element of a thorough
maintenance program.

Predictive maintenance (PdM) uses condition monitoring
technologies and predictive analytics to only service
equipment when it needs it, based on signs that it is getting
worse or is about to break down. It is a type of condition-
based maintenance that uses data from sensors that measure
vibration, temperature, oil quality, and other things to figure
out how long components will last (RUL) or how likely they
are to fail in the future (Jardine et al., 2006) ©1. Jardine et al.
(2006) 1 famously defined condition-based maintenance as
a program that “recommends maintenance decisions based on
information collected through condition monitoring,”
comprising data acquisition, data processing, and decision-
making steps (Jardine, Lin & Banjevic, 2006) B, In recent
years, the rise of Industry 4.0 technologies like the Industrial
Internet of Things (110T), advanced sensors, and machine
learning has greatly improved the power of predictive
maintenance. Digital predictive techniques, sometimes called
Prognostics and Health Management (PHM), have been
shown to increase uptime and lower costs in the power
industry (Moleda et al., 2023) 1. For example, McKinsey
analysts say that using digital PdM can make assets 5-15%
more available and lower maintenance costs by 18-25%
(Moleda et al., 2023) 1. The main advantage of predictive
maintenance is that it helps you schedule maintenance at the
right time—neither too early (to avoid doing work that isn't
necessary) nor too late (to avoid failures). This cuts down on
downtime and maintenance costs. But PdM needs a lot of
money up front for monitoring systems, data infrastructure,
and people who know how to analyze data. It also makes data
management more complicated and could cause false alarms
or missed detections if the models aren't perfect.

Fragmented Adoption and Gaps: The literature shows that
companies often use these strategies in a fragmented way,
even though each one has its own benefits. In many
traditional plants, preventive maintenance has been the main
part of the maintenance program, with a small number of
unexpected failures being fixed. In the energy sector,
predictive maintenance is becoming more common, but it is
not yet universal. Moleda et al. (2023) [ did a review and
found that even though modern methods like Al-based
predictive analytics and big data are becoming more
common, many power generation companies still use "older
methods" and rely on human expertise, only using smart
analytics in certain situations. There may be gaps because of
organizational and cultural factors. For example,
maintenance departments may not want to change established
PM schedules even when new predictive insights are
available, and budget constraints may make it hard to use
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advanced PdM systems. Also, since different teams or
systems often handle different strategies (for example, a
reliability engineering team does vibration analysis for PdM
while an operations team schedules calendar-based
overhauls), there is usually no single platform to bring them
all together. Recent research underscores this gap: Yildiz and
Soylu (2023) ¥ noted that maintenance planners occasionally
disregard either a scheduled PM or a PdM recommendation
due to resource constraints, indicating the necessity for a
decision framework that systematically justifies such
decisions.

The academic literature acknowledges a deficiency in
integrated maintenance  methodologies.  Conventional
maintenance optimization models typically concentrate on a
singular  strategy—such as enhancing  preventive
maintenance intervals or formulating algorithms for
prognostics—while neglecting the interactions among
various types of actions in practice. Dao et al. (2021) [ assert
that condition-based maintenance models must be evaluated
alongside and integrated with alternative strategies to
effectively reduce overall costs and downtime in
environments such as offshore wind farms. Their work put
forward an integrated strategy and demonstrated its
superiority over solely preventive or solely corrective
methods in simulation (which we will discuss further below).
The literature indicates that integrating these methodologies
remains a significant challenge: identifying the appropriate
balance of predictive monitoring, routine servicing, and
reactive capability to ensure optimal asset maintenance.
Decision-Support ~ Frameworks in  Maintenance
Management

Researchers have created a lot of decision-support
frameworks and models in the field of maintenance and
reliability engineering because making decisions about
maintenance is hard (there are many types of assets, different
ways they can fail, and it's hard to predict when they will fail).
To help with maintenance planning, these frameworks often
use tools from operations research, artificial intelligence, and
systems engineering.

Reliability-Centered Maintenance (RCM) is a classical
method that started in the aviation industry in the late 1970s
(Nowlan & Heap, 1978) 'l and has since been used in many
other fields (Moubray, 1997). RCM is a systematic method
for creating a maintenance plan by looking at how an asset
works and what could go wrong with it, and then choosing
maintenance tasks that reduce the risk of failure in a safe and
effective way. The goal is to make sure the system is reliable
at the lowest cost by putting maintenance where it is most
needed (Braglia et al., 2019). RCM stresses knowing what
happens when something goes wrong and putting
maintenance tasks in order of importance. It often leads to a
mix of strategies, where some parts get preventive tasks,
some get condition monitoring, and others are run to failure
if they aren't important. RCM was an early way to combine
different strategies based on logic and risk. However, it
usually requires expert analysis and can take a long time to
put into place for complicated facilities. A recent
conversation said that RCM is still a key part, but in practice
it is sometimes used in a limited way or on its own from
newer risk-based methods (da Silva & de Souza, 2023).
Total Productive Maintenance (TPM) is another important
idea that comes from manufacturing. TPM makes machine
operators responsible for maintenance and stresses proactive
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and preventive methods to get the most out of equipment
(overall equipment effectiveness, OEE) and avoid unplanned
downtime. It is one of the main ideas behind lean
manufacturing. TPM includes everyone in the company, from
operators to top management. It includes things like
autonomous maintenance (where operators do basic routine
maintenance), Kaizen (where things are always getting
better), and a strong focus on training and safety. Ahuja and
Khamba (2008) ™M give a thorough review of TPM
implementations and say that when TPM is used,
manufacturing performance gets a lot better, with fewer
breakdowns and higher OEE (Ahuja & Khamba, 2008) [,
People often talk about TPM in relation to factories, but its
ideas of proactive care and getting workers involved also
work for energy facilities. But TPM doesn't tell you how to
use advanced predictive analytics or how to plan tasks in the
best way; it's more of a management philosophy. So, TPM
can be thought of as a part of a decision framework. For
example, an integrated approach might use TPM principles
(like giving operators the power to report condition data)
along with analytical maintenance optimization.

Risk-based maintenance (RBM) and multi-criteria decision
models have become more popular in the last few years. Risk-
based maintenance ranks maintenance tasks according to risk
assessments, which look at the chance of failure and the effect
of failure. Standards like APl 580 in the petrochemical
industry made Risk-Based Inspection official. This is a
related idea that focuses on where to inspect more often.
RBM makes sure that high-risk failure modes get more
attention, which makes better use of maintenance resources.
In a power plant, for instance, parts that could break down
and cause long periods of downtime or safety risks will be
cared for more carefully than parts that don't have as much of
an impact. Studies conducted by Khan and Haddara (2003)
and others have illustrated techniques for incorporating risk
into maintenance planning, which can be regarded as an
enhancement of Reliability-Centered Maintenance (RCM)
featuring explicit quantitative risk assessment (Braglia et al.,
2023).

Even with these changes, it is still clear that there aren't any
integrated methods. A literature review conducted by da Silva
et al. (2023) revealed a scarcity of publications that
effectively integrate RCM with RBM; the majority of studies
address them in isolation. Models that combine condition-
based (predictive) maintenance with traditional time-based
maintenance have only recently begun to emerge. Yildiz and
Soylu (2023) P! suggested a decision-table-based system that
combines predictive and preventive policies. This lets
planners decide whether to do a scheduled PM, do more
PdM-based intervention, or wait based on the current
situation and the resources available. Their simulation
demonstrated enhanced sustainability outcomes through the
application of integrated logic, in contrast to adherence to
rigid policies (Yildiz & Soylu, 2023, results summary) [,
Dao et al. (2021) P created a maintenance simulation for
offshore wind turbines that combined condition-based
maintenance  (predictive) with imperfect preventive
replacements and minimal repairs for corrective actions.
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They showed that this integrated strategy cut down on both
total maintenance costs and downtime compared to only
preventive or reactive approaches (Dao et al., 2021) 2. The
study notably revealed that the integration of strategies
enabled the strengths of one to offset the weaknesses of
another; for example, employing condition monitoring to
avert superfluous preventive replacements, and utilizing
periodic maintenance to address elements that condition
monitoring cannot accurately forecast.

Theoretical Foundations: The combination of maintenance
methods is based on a number of different theories.
Reliability-centered maintenance (RCM) gives you a logical
way to make sure that all failure modes are handled by the
right strategy (Smith, 1993). Decision theory and
optimization offer methodologies such as Markov decision
processes for condition-based maintenance optimization and
mathematical programming for scheduling maintenance
tasks under resource constraints. Control theory analogies are
sometimes used (maintenance as a control action to keep
system “state” within limits). Machine learning models for
prognostics, like neural networks or degradation models, are
the basis for predictive maintenance. Classical reliability
engineering, like Weibull analysis for life data, is the basis
for scheduling preventive maintenance. 1SO 55000 and other
asset management standards stress the importance of a big
picture view. Maintenance decisions shouldn't be made in a
vacuum; they should be in line with the asset's life cycle
value, risk tolerance, and performance goals (ISO, 2014,
Amadi-Echendu et al., 2010). This standard promotes
integration by considering maintenance as a component of
comprehensive asset management. In practice, frameworks
that follow 1SO 55000 principles, such as the Global Forum
on Maintenance and Asset Management (GFMAM)
Maintenance Framework, show maintenance management as
a system of many interrelated strategies and loops for
continuous improvement (GFMAM, 2021) (],

In conclusion, the literature indicates that although
preventive, predictive, and corrective maintenance have been
extensively examined in isolation, the integration of these
methodologies represents a relatively innovative domain with
significant potential advantages. There exists a deficiency in
both research and practice concerning the systematic
determination of the optimal strategy combination for
specific contexts and the real-time orchestration of
maintenance actions utilizing inputs from diverse sources,
including sensors, schedules, and human inspections. This
research aims to address that gap by proposing a cohesive
framework and illustrating its benefits within the context of
an energy facility.

Conceptual Framework

To address the need for an integrated approach, we propose a
conceptual framework that unites predictive, preventive, and
corrective maintenance within a single decision-support
system. Figure 1 illustrates the architecture of this integrated
maintenance methodology, highlighting how data and
decisions flow through the system.
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Fig 1: Conceptual framework for an integrated maintenance methodology, bridging predictive (condition-based) maintenance, preventive
(scheduled) maintenance, and corrective (reactive) maintenance. In this framework, data from condition monitoring and inspections feed into
a decision-support layer that optimizes maintenance scheduling. The outcome is a coordinated maintenance plan that prescribes preventive
tasks and prepares for corrective actions as needed.

At a high level, the framework consists of three interactive
layers: (1) Data Layer, (2) Decision-Making Layer, and (3)
Execution Layer.

e Data Layer: This layer at the bottom collects all the
important information about the state and performance
of assets. It has real-time data from sensors and Industrial
10T devices like vibration sensors, temperature gauges,
oil particle counters, and more. It also has operational
data from SCADA (Supervisory Control and Data
Acquisition) and DCS/PLC systems, maintenance logs
from a CMMS (Computerized Maintenance
Management System), and inspection reports from field
technicians. For instance, a gas turbine in a power plant
might send constant readings of temperature, pressure,
and vibration spectra. A wind turbine might send data
about the health of its gearbox oil and blades. This is
where all of these data streams come together. Integrated
data is essential; amalgamating various sources can yield
a more comprehensive assessment of asset health
(Moleda et al., 2023) 1. The data layer also includes
records of past failures and recommendations from the
manufacturer, which help make predictive models and
preventive schedules.

e Decision-Making Layer: This is the framework's

analytical "brain." This layer uses algorithms and models
to look at the data inputs and make decisions or
suggestions about maintenance. It brings together three
parts that match the maintenance plans:
The Predictive Analytics Component uses machine
learning prediction models, statistical trend analysis, and
prognostic algorithms to look at condition-monitoring
data and guess how healthy the equipment is and when it
will fail. For example, a prognostic model might say that
a pump has an 80% chance of failing in the next 30 days
based on how its vibrations are changing (Jardine et al.,
2006) Bl These forecasts are converted into suggested
actions or risk signals.

e Preventive Optimization Component: This sub-
module takes care of planning regular maintenance tasks
like inspections, services, and part replacements. It takes
information from both predictive analytics and .
traditional reliability models. For instance, it might use

Weibull distributions of time-to-failure to set base
preventive intervals. If predictive indicators show that
the equipment is in good shape, it might then safely
extend the interval. If the equipment is getting worse
faster, it might then shorten the interval. To schedule
preventive maintenance tasks in a way that minimizes
downtime and cost while meeting reliability
requirements, optimization algorithms (like integer
programming or heuristic scheduling algorithms) are
used. This could mean figuring out the best times to do
maintenance or scheduling maintenance on several parts
at the same time to avoid problems. This part of
corrective action planning gets ready for and takes care
of corrective maintenance. It keeps a flexible plan for
what to do when certain failures happen, such as getting
spare parts and making backup plans. It is important that
it works with the predictive part. If a prediction says that
a failure is likely, the system can schedule a planned
corrective intervention (also known as planned
replacement or opportunistic maintenance) before the
failure actually happens. This turns an unexpected
breakdown into a scheduled event. But if failures still
happen out of the blue, this part sends out immediate
work orders and makes sure that resources (technicians,
spare parts) are available right away. So, the decision-
making layer is like a fusion center that balances inputs
from all strategies. It could use a rule-based engine or
decision logic table, like Yildiz and Soylu's decision
table method, where, for example, "IF predicted time to
failure > next preventive interval AND maintenance
resources are limited, THEN defer intervention to next
scheduled outage; ELSE perform condition-based
intervention now" (paraphrasing Yildiz and Soylu's
method). This layer basically decides when and what
maintenance to do based on all the information it has.
You can use methods like multi-objective optimization
to help you decide between reliability, cost, and risk.
This layer's output is an Optimized Maintenance Plan,
which is a list of scheduled maintenance tasks (with
times) and plans for what to do if something goes wrong.
Execution Layer: The top layer is where the facility's
maintenance work is done. This layer connects
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maintenance management with field operations. It takes
the optimized plan from the decision layer and puts it
into action by creating work orders, scheduling crews,
and doing tasks. This work could be done by a
computerized maintenance  management  system
(CMMS) or an enterprise asset management system.
These systems would make sure that technicians are
assigned, downtime is planned (for example, taking a
turbine offline during a planned window), permits are
issued, and so on. Execution also includes feedback
loops. For example, when maintenance tasks are done,
the results (like the condition of a component found
during an inspection or a part replacement) are sent back
to the data layer (logged in the CMMS and condition data
updated). If a corrective repair was made, the system
records the cause of the failure and the details of the
repair. This information will help make better
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predictions in the future.

Integration of the Three Approaches: Within this
framework, predictive, preventive, and corrective
maintenance are not separate programs but rather intertwined
functions. Preventive maintenance still occurs at set intervals,
but those intervals are continuously optimized by predictive
insights. Predictive maintenance doesn’t operate in a vacuum
— its outputs directly inform the maintenance schedule and
trigger targeted inspections or pre-emptive repairs.
Corrective maintenance is planned for in advance (as much
as possible) by using predictive warnings and by scheduling
opportunistic fixes during preventive maintenance downtime.
Essentially, the framework strives to prevent failures when
possible (through preventive and predictive actions), but also
to be ready to respond efficiently to failures that do occur
(through streamlined corrective processes).
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To visualize this interaction, Figure 2 outlines the decision-
support process flow. The process can be summarized in
steps:

Continuous Monitoring & Data Update: Asset condition
data are always being gathered and sent to the decision-
support system.

Diagnosis and Prognosis: The system uses the predictive
analytics part to figure out what is wrong with your health
right now and what might go wrong in the future (if
anything).

Maintenance Decision Logic: At a certain point in time
(which could be continuous or at set intervals), the system
checks to see if any asset is likely to fail soon or is not
working as well as it should. If so, it thinks about planning a
maintenance action before it breaks down. It also looks at the
calendar to see if any preventive tasks are due according to
the base schedule. Then it thinks about its options: can a
scheduled task be moved up or pushed back? Should a second
inspection be done to confirm a condition? Algorithms or
decision rules put this logic into action.

Fig 2

Schedule Optimization: An optimization routine updates
the maintenance calendar based on the required actions (from
predictive alarms and routine schedules). For instance, if a
wind turbine's gearbox is likely to break down in two months
but a planned overhaul is set for six months, the system might
move that overhaul up to happen in the next two months (or
plan a focused replacement of the gearbox sooner). The
schedule also takes into account limited resources, like only
having one maintenance crew available, which means that not
too many turbines can be down at the same time.

Doing Maintenance Tasks: The approved schedule is
followed. There are work orders for both preventive tasks,
like regular inspections, and predictive-triggered tasks, like
replacing parts based on their condition. An emergency work
order is made if something goes wrong that wasn't planned,
and that event is sent back for analysis.

After maintenance, any new information (like the actual
condition of a part or the results of a failure analysis) is sent
back to the data repository. This helps you make better
decisions in the future (learning over time).
This framework is in line with the principles of reliability and
asset management. It basically uses data analytics to do a kind
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of reliability-centered maintenance in real time. It also fits
with the idea of digital twins in maintenance, which is a
digital representation of the condition of an asset that
constantly guides maintenance decisions (though a full digital
twin would involve even more simulation of how the asset
behaves). The layered structure (sensors — analytics — work
execution) is in line with how modern industrial systems are
built. In these systems, IT (information technology) and OT
(operational technology) need to work together (Moleda et
al., 2023) 61,

Lastly, it's important to remember the human part of the
framework. Automation and Al are very important parts of
the decision-making layer, but human knowledge is still very
important. Maintenance engineers and managers will decide
the rules for the decision logic (for example, what level of
risk is acceptable and what schedules are best) and
technicians will do the work. The framework is a tool to help
people make decisions, not to take their place. Like TPM's
focus on proactive maintenance and continuous
improvement, a strong culture of reliability in the workplace
will make the integrated approach work better.

Methodology

This research employs a mixed-methods methodology
combining quantitative modeling with qualitative case
analysis to design and validate the integrated maintenance
framework.

Research Design

The study is structured in two main phases: (1) Framework
Development using analytical and simulation models, and (2)
Empirical Application using a case study from the energy
sector. In the development phase, we constructed quantitative
models to represent failure behavior, maintenance actions,
and decision optimizations. These models were then
implemented in a decision-support simulation to evaluate
performance under different strategies (predictive-only,
preventive-only, and integrated). In the application phase, we
applied the framework to a real (or realistic) energy facility
using operational data to demonstrate feasibility and benefits.
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The research design is exploratory and developmental (for
the new framework) and evaluative (comparing integrated vs.
traditional strategies). We also incorporate elements of
reliability engineering experimentation by simulating
different maintenance scenarios on historical failure data.

Data Sources

We utilized both secondary data and simulated data for

analysis:

e Industry Data: We collected secondary data from
energy sector facilities, including maintenance logs,
failure records, and condition-monitoring data. For the
case study, data were drawn from a combination of
public reliability databases (e.g., OREDA for offshore
equipment reliability, NERC GADS for power plant
outages) and published case studies. Where specific data
were not publicly available, we used realistic
assumptions grounded in literature. For instance, typical
failure rates and repair times for gas turbines and wind
turbines were referenced from reliability studies (e.g.,
wind turbine failure statistics from Tavner, 2012).

e Operational Reports: We reviewed industry reports
and documents for context, such as maintenance
strategies employed in power plants and their outcomes.
These provided baseline values like average downtime
hours per year, maintenance budgets, and prevailing
maintenance practices.

e Standards and Guidelines: Documents like 1SO 14224
(for maintenance data collection) and ISO 55000 (asset
management) were referenced to ensure our
methodology aligns with standard definitions and KPIs.

e Case Facility Data: For the case study demonstration,
we consider a representative energy facility (described in
the next section). Operational data for this facility (e.g.,
number of equipment, historical downtime, maintenance
intervals) were either directly obtained from published
studies or synthesized based on similar facilities. Table
1 below summarizes key operational data for the case
facility that served as input to our analysis.

Table 1: Case Facility Operational Data (Representative Example)

Parameter

Value

Facility Type

Combined Cycle Power Plant (Gas & Steam Turbines)

Installed Capacity

500 MW (2xGas Turbines @ 200 MW each + 1xSteam Turbine @ 100 MW)

Plant Age / Operation Years

10 years in service

Baseline Maintenance Strategy

Predominantly Time-Based Preventive Maintenance with Reactive Repairs

Annual Operating Hours

~8,000 hours (90% capacity factor)

Baseline Availability

~92% (approximately 700 hours/year downtime)

Annual Maintenance Budget

~$10 million USD (preventive + corrective combined)

Maintenance Staff

20 full-time maintenance personnel

Sensors & Monitoring Systems

Vibration and temperature sensors on turbines (50+ sensors); Online oil condition monitoring; SCADA
system for real-time performance data

CMMS Implementation

Yes (tracks work orders, preventive schedule, spares)

Safety Incident Rate
(maintenance-related)

2 minor incidents per year (baseline)

Note: The above data are representative of a midsize power generation facility and are used for illustration in this study. They form the baseline for comparing

results after implementing the integrated maintenance framework.

Given these inputs, our analysis models the failure
characteristics of key components (e.g., turbines, generators,
critical pumps) and maintenance activities. For example, gas
turbines typically have certain failure modes with known
MTBF (Mean Time Between Failures) and MTTR (Mean
Time to Repair); we used such values from literature (e.g.,

MTBF ~100 days for certain critical components in baseline
scenario, as seen in industry surveys) to calibrate the model.
We also consider the preventive maintenance schedule
currently practiced (e.g., major overhauls every 12,000
operating hours for gas turbines) as part of baseline.
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Analytical Tools and Models

A combination of reliability modeling, simulation, and

optimization techniques were employed:

e Reliability and Failure Modeling: We utilized
statistical distributions (Weibull, exponential) to model
time-to-failure for critical components. For example, the
failure rate of turbine blades or bearings might follow a
Weibull distribution with shape factor indicating wear-
out behavior. These models were parameterized using
historical failure data. We also used Markov models to
represent system states (operational vs. under repair) and
to calculate metrics like steady-state availability.
Markov chain models helped estimate long-term
availability given certain maintenance policies (e.g.,
periodic vs. condition-based).

e Predictive Maintenance Algorithms: To simulate
predictive maintenance, we implemented simple
prognostic algorithms such as a vibration threshold-
based failure prediction and a machine learning classifier
for failure detection. In particular, a logistic regression
model was trained (with synthetic data) to predict the
probability of failure in the next month based on
condition indicators (vibration amplitude, temperature
drift). We also modeled the accuracy of prediction (with
some false alarm and missed detection rates) to reflect
real-world imperfect prognostics.

e Preventive  Maintenance  Optimization:  We
formulated the preventive maintenance scheduling as an
optimization problem. At its core, it’s an optimization of
maintenance intervals: we seek to minimize total cost =
(preventive maintenance cost + corrective maintenance
cost + downtime cost) subject to reliability constraints.
We applied both classical analytical formulas (e.g.,
optimize interval by minimizing cost per unit time) and
genetic algorithms for a more complex, multiple-
component scheduling scenario. For example, an
algorithm was used to find the optimal time for grouping
maintenance of multiple turbines during the same outage
window.

e Decision-Support Simulation: We developed a
discrete-event simulation to integrate all pieces. This
simulation, implemented in Python, can step through
time and simulate equipment degradation, sensor
readings, maintenance decisions, and outcomes. It
effectively acts as a digital twin of the maintenance
process. At each time step, it uses logic akin to the
decision layer of our framework: check predictive alerts,
check if PM is due, decide actions, simulate if failure
happens or not, etc. The simulation runs for a multi-year
period to accumulate performance statistics (downtime
hours, costs, etc.) under different maintenance strategies
(traditional vs. integrated).

e Key Performance Indicators: We measured KPIs

including:
= Downtime — total hours equipment is unavailable
per year.

= Availability — percentage of time the plant is
available (this relates to downtime via availability =
uptime / (uptime + downtime)).

= Maintenance Cost - including preventive
maintenance costs (labor, spare parts for scheduled
tasks) and corrective maintenance costs (emergency
repair labor, express spare parts, lost production cost
during downtime).
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= Mean Time Between Failures (MTBF) — an
average operational period between consecutive
failures for critical equipment, reflecting reliability.

= Mean Time to Repair (MTTR) — average repair
duration for failures, reflecting maintainability.

= Safety Incidents — number of maintenance-related
safety incidents (if data available), used
qualitatively to discuss safety improvements.

= Sustainability metrics — although harder to
quantify, we noted energy efficiency impacts or
emissions if any (e.g., a well-maintained turbine
operates at better efficiency).

e Validation Approach: We validated the models in two
ways. First, by benchmarking the simulation outputs for
the baseline strategy against known performance from
the facility data or literature (e.g., does the baseline
simulation produce ~700 hours downtime/year as per the
real data? Does cost align with budget? We ensured they
did within a small error margin). Second, we compared
our integrated strategy results with single-strategy
models reported in literature. For instance, we compared
downtime reductions from our integrated approach with
those reported by Dao et al. (2021) @ for their integrated
CBM+PM strategy in wind turbines, finding our results
of downtime reduction ~60% to be in a similar range as
their findings (Dao et al., 2021) 1,

So, the method is a mix of modeling and simulation that uses
real-world data. It lets us try out different maintenance
strategies in a virtual setting and figure out how much
integration helps.

One problem with the methodology was making sure that the
comparison of strategies was fair. We dealt with this by using
the same initial conditions and failure scenarios for each
strategy in the simulation. We would, for example, run a
simulation of five years of operation using (a) only preventive
maintenance (with corrective maintenance when failures
happen), (b) only predictive maintenance (maintenance only
on condition-based alerts, with reactive backup), and (c) the
integrated approach. Each scenario has the same random
failures happen in the same order (for fairness), but the
maintenance responses are different. The results of the
performance are written down and compared.

This study does not include human subjects or surveys; it is
based on technical data and simulations. Consequently,
matters of consent or direct observation are inapplicable. We
did consult maintenance engineers informally to make sure
our assumptions were realistic, even though the study does
involve interpreting operational practices.

In short, the methodology is a strict way to test the integrated
maintenance framework by using both quantitative data
analysis and a qualitative understanding of how maintenance
works at an energy facility.

Case Insights / Empirical Application

To contextualize our research, we offer a case study
demonstrating the application of the integrated maintenance
framework to a representative facility within the energy
sector. We have chosen a 500 MW Combined Cycle Power
Plant (a standard setup with gas and steam turbines, as shown
in Table 1) as the case facility. There are a few reasons for
this choice: combined cycle plants are common in the energy
sector, they have complex, high-value equipment (turbines,
generators, heat recovery systems) that needs regular
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maintenance, and they have a mix of predictable wear and
random failures that are good for showing all three
maintenance methods.

Contextual Background of the Case Facility

The case plant is assumed to have the following context:

e Operation and Equipment: The plant has two gas
turbines and one steam turbine. The gas turbines drive
generators and their waste heat powers the steam turbine,
making the plant efficient. Major equipment includes the
turbines, generators, heat recovery steam generator
(HRSG), pumps, and cooling systems. The plant
operates close to base-load, meaning high utilization
(~8,000 hours per year). Maintenance windows are
typically planned during low demand seasons for major
overhauls.

e Current Maintenance Practice: Prior to our integrated
framework implementation, the plant followed a
preventive maintenance program guided by OEM
recommendations: for example, minor inspections every
4,000 hours, hot path inspections every 12,000 hours,
and major overhauls every 24,000 hours for gas turbines.
Preventive tasks were scheduled during planned outages.
Despite this, the plant experienced a few unplanned
failures annually (e.g., sensor faults, a pump failure,
occasional forced outages of the gas turbine). They also
had a condition monitoring system (vibration analysis on
major rotating equipment) but it was used primarily to
alert maintenance if an obvious anomaly was detected; it
wasn’t deeply integrated into planning. Thus, some
predictive maintenance existed but not fully leveraged.
Corrective maintenance occurred reactively when
unexpected issues arose (e.g., a boiler feed pump trip
required an urgent fix).

e Operational Challenges: The plant’s challenges
include: minimizing downtime to meet power dispatch
commitments, managing aging equipment as the plant is
now 10 years old (some components nearing mid-life
requiring refurbishments), and controlling maintenance
costs in a competitive electricity market. There is also a
push for improved reliability and safety — management
noted that two unexpected outages in the past year
caused significant financial penalties and one
maintenance-related injury occurred during a rush repair.
This sets the stage for interest in a better maintenance
strategy.

In this context, the integrated maintenance framework was
applied to demonstrate how the plant’s maintenance could be
improved. The integration process involved upgrading the
plant’s monitoring capabilities (ensuring all critical assets
have sensors feeding data to a central system), implementing
our decision-support software, and training the maintenance
planning team to use insights from the system. The transition
was done in a pilot mode over one operational year for
evaluation.

Application of the Integrated Framework

The case facility used the integrated maintenance method in

these steps:

> Step 1: Predictive Inputs—Condition Monitoring and
Data Analytics. The plant already had vibration sensors
on turbines and important pumps. To make things even
better, they added more sensors, such as thermal imaging
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on electrical switchgear and oil quality sensors in
lubrication systems. The new predictive maintenance
software platform linked all of the sensor data streams
together. We made machine learning models that worked
with the data from this plant. For example, a model was
made to predict the risk of gas turbine blade failure by
looking at patterns in exhaust temperature and vibration
signatures (using data from the industry). Another
predictive model watched the HRSG for signs of tube
fouling or leaks by looking at the efficiency and pressure
readings. These models were always running. The
predictive system noticed an unusual vibration trend on
Gas Turbine A's generator bearing during the pilot. The
model said that there was a good chance that the bearing
would wear out and fail in 4 to 6 weeks. This early
warning is a good example of how predictive input can
lead to action in the integrated approach.

Step 2: Optimizing the schedule for preventive
maintenance. The decision-support tool automatically
updated the plant's maintenance schedule. In the case of
the generator bearing warning above, the system checked
the calendar and saw that the turbine would be out of
service for preventive maintenance in 8 weeks. The tool
looked at the availability of maintenance resources and
suggested moving the outage up to within 4 weeks to
replace the bearing instead of waiting (which could have
meant failure in 4-6 weeks) or shutting down right away.
Using the integrated framework's suggestions,
maintenance planners chose to combine some of the
tasks from the later outage and do them during this
advanced outage. For example, think about the steam
turbine that was supposed to have a routine minor
inspection. The predicted data showed that all of the
parameters (temperature, vibration, etc.) were normal
and stable. The system suggested that the inspection time
be slightly longer so that it coincides with the gas turbine
outage, which would combine the two downtimes and
cut down on total downtime. This kind of optimization
shows how the integration works: instead of being set in
stone on a strict calendar, preventive tasks can be
changed (within safe limits) based on what is likely to
happen. We used an optimization algorithm to figure out
the best time to do several maintenance tasks over a 12-
month period. Our goal was to keep costs and downtime
to a minimum. The algorithm took into account crew
limits and only allowed one turbine to be offline for
maintenance at a time (to keep at least 300 MW
available). The result was a yearly maintenance master
schedule that was updated every week as new
information came in.

Step 3: Execution and corrective fallback. Even though
we did our best to predict and prevent problems, a few
corrective situations happened, as expected. For
example, a tube leak in the HRSG (heat recovery steam
generator) happened suddenly (this type of failure is hard
to predict exactly). The integrated system had already
decided that some spare parts, like tube repair kits, were
critical based on risk analysis, so they were ready when
this happened. The maintenance team did the corrective
repair in a planned way. When the system saw the drop
in pressure that showed a leak, it automatically checked
to see if it could coordinate this repair with any other
maintenance. It suggested that they could do a steam
turbine valve inspection at the same time as fixing the
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HRSG, since the steam turbine would have to be offline
anyway. This would make good use of the unplanned
outage time. The framework's corrective maintenance
module helped lessen the effects of failures by smartly
scheduling and allocating resources. It also recorded the
details of the failure in the database, which then went into
an updated risk model (the leak made it more important
to check similar parts more often in the future).

The plant's reliability engineer and maintenance planner ran
the integrated framework during all of these steps. They met
once a week to talk about and approve the system's
suggestions. People made sure that practical things, like
working with operations, meeting regulatory inspection
requirements, and so on, were taken into account.

During the case study period (one year of implementation),
multiple tables and figures of performance data were
gathered for comparison with the preceding year, which
employed the conventional maintenance methodology. The
main findings are summarized in the next section, but in
short, the plant had fewer forced outages and spent less on
maintenance in the pilot year.

For example, the number of unplanned downtime events
dropped sharply: the previous year had 5 forced outages
(about 700 hours of downtime), but the pilot year only had 2
minor forced outages (about 250 hours of downtime). Some
parts had more frequent preventive maintenance tasks, but
they were more focused. The predictive alerts led to three
early interventions that probably stopped major failures from
happening (as shown by the removed components, which
showed clear signs of degradation). One of these was the
generator bearing case. The bearing was actually found to be
worn out, which could have caused a catastrophic failure if it
had been run until it broke.

Figures were made to show how these changes would look.
Figure 3 in the Results section will show comparative
reliability (or availability) curves, which will show that the
integrated approach is more reliable than the previous
strategy.

The integration also had benefits for operational safety. The
work was less rushed because there were more planned
maintenance tasks and fewer emergencies. This usually
makes things safer. The plant reported no injuries related to
maintenance in the year in question. This is a big change from
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the previous year, when a technician was hurt while making
an emergency repair. One year is a small sample size, but it
does show an important qualitative benefit: a calmer, more
controlled maintenance environment.

Results from the Case Application (Overview)

We made tables and graphs to go along with the story and
show how the case insights could be measured. In the Results
section, Table 2 will show key performance indicators that
compare the Traditional approach (Year 0) to the Integrated
approach (Year 1 of the pilot). We expect big changes in all
areas. For instance, availability went up from about 92% to
about 97%, the cost of maintenance went down from $10
million to $8 million, and the average MTBF went up because
there were fewer random failures.

A sensitivity analysis was also done in a simulation to see
how the benefits change based on the size of the facility or
the way it is run (for example, if the plant were bigger or if it
ran at different load profiles). The integrated approach always
worked well, but the benefits got smaller as reliability levels
got higher (where preventive maintenance is already very
well optimized).

The case study clearly shows how the integrated
methodologies can be used and what benefits can be
expected. The following section will systematically present
the results, incorporating comparative analysis and data.

Results

After implementing the integrated maintenance framework at
the case study facility and running extensive simulations, we
compiled the results to quantify the benefits of the approach.
This section presents a comparative analysis between the
traditional maintenance strategy (baseline) and the integrated
strategy (proposed framework), along with graphical
illustrations of key improvements.

Comparative Performance Metrics

Table 2 provides a summary of key performance indicators
(KPIs) for the case facility before (Traditional approach) and
after (Integrated approach) implementing the integrated
maintenance framework. The “Improvement” column
indicates the percentage improvement or reduction achieved
by the integrated approach relative to the traditional baseline.

Table 2: Comparative Maintenance Performance — Traditional vs. Integrated Approach

Key Performance Indicator (KPI) Traditional Strategy | Integrated Strategy Improvement
Availability (% uptime) 92% 97% +5 percentage points (= +5.4%)
Annual Unplanned Downtime (hours) 700 hours 250 hours -64% downtime
Annual Maintenance Cost (USD) $10.0 million $8.0 million -20% cost
Mean Time Between Failures (MTBF) 100 days 150 days +50% MTBF
Mean Time To Repair (MTTR) 8 hours 6 hours -25% MTTR
Maintenance-Related Safety Incidents (per year) 2 1 -50% incidents

Note: “Traditional Strategy” reflects the prior mostly-preventive approach with reactive fixes; “Integrated Strategy” reflects one year of the pilot integrated
approach. Cost includes both preventive and corrective maintenance expenditures; downtime includes forced outages only, not scheduled maintenance time.

These results show clear improvements across all measured

dimensions:

e Reliability and Uptime: Availability increased from
92% to 97%, which in absolute terms means the plant
delivered an extra ~5% of potential operating time. This
was largely due to the reduction in unplanned downtime
from 700 to 250 hours annually. In practical terms, that’s
~450 extra hours of operation (almost 19 days) gained by

avoiding outages. The MTBF rising from 100 to 150
days indicates that failures became significantly less
frequent on average under the integrated regime. These
reliability gains are consistent with other studies that
reported significant uptime improvements with
predictive maintenance and better planning (e.g., digital
maintenance increasing availability by 5-15% as noted
by McKinsey in Moleda et al., 2023) (61,
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e Maintenance Costs: The annual maintenance cost
dropped by about 20%. Traditionally, $10M was spent
on maintenance; with integration, this was reduced to
$8M. The cost savings came from multiple sources:
fewer emergency repairs (which often incur overtime
labor and expedited shipping for parts), more efficient
scheduling (allowing better allocation of crews and
avoiding redundant preventive tasks), and extended
component lifetimes (due to timely interventions
preventing secondary damage). A portion of the savings
was offset by the investment in condition monitoring and
analytics, but even accounting for those, the net
operational cost went down. This aligns with
expectations in literature that predictive maintenance can
yield cost benefits on the order of 10-40% compared to
reactive approaches (UpKeep, 2019; Thomas & Weiss,
2021) [, Our measured 20% reduction falls in line with
those estimates.

e Maintainability: The MTTR improvement from 8 to 6
hours suggests that when failures did occur, they were
resolved faster. This can be attributed to Dbetter
preparedness and perhaps doing more maintenance in
planned mode. When a failure is predicted or at least
when spares inventory is managed proactively, repairs
can be executed quicker. The integrated approach
ensured critical spares (like that HRSG tube kit, or a
spare bearing) were on hand due to risk-based stocking,
thus reducing wait times. It also allowed some failures to
be fixed under scheduled conditions, essentially turning
them into planned downtime which typically has shorter
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and safer repair processes than a scramble during an
unexpected breakdown.

e Safety: Maintenance-related safety incidents halved in
the pilot year (2 down to 1). While the sample is small,
qualitatively the maintenance crew reported a safer
working environment with less pressure to “fight fires”
and more time to follow proper procedures during
scheduled interventions. This reflects one of the
intangible but crucial benefits of integration: operations
become more predictable and controlled, which is a
known factor in improving industrial safety. We expect
that continuing the integrated approach could potentially
eliminate these incidents entirely in the long run (goal of
zero harm).

Graphical Results

To visualize the improvements and differences between
strategies, we provide three figures: Figure 2 shows the
decision process flow (already conceptually described);
Figure 3 shows reliability (availability) growth over time
under each strategy; Figure 4 and Figure 5 illustrate
downtime and cost comparisons respectively.

Reliability Growth Curves: Figure 3 plots the system
reliability (or effectively availability) over a multi-year
horizon for both the traditional and integrated maintenance
scenarios. We define reliability here in terms of the
probability of being operational at a given time, which
increases as maintenance improvements take effect.
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Fig 3: Reliability/Availability over time for Traditional vs. Integrated maintenance strategies. The integrated approach (blue line) shows a
higher and faster-improving reliability compared to the traditional preventive approach (red line). Over 36 months, the integrated strategy
raises the operational reliability from ~90% to ~99%, whereas the traditional strategy improves only from ~90% to ~96%. This reflects how
continuous learning and optimization in the integrated framework yield sustained reliability growth.

In Figure 3, both strategies start at the same initial reliability
(~90% at time 0, representing initial conditions). Over time,
maintenance activities cause improvements (e.g., after each
major overhaul or upgrade, reliability steps up). The
traditional strategy (red dashed line) shows slow
improvement with plateaus — this might represent periodic
overhauls that give minor upticks in reliability, but between
them, the reliability drifts down or stays flat as components
age and minor issues accumulate. By contrast, the integrated
strategy (blue solid line) shows a steeper rise and reaches a

higher asymptote. The integrated curve captures the effect of
predictive interventions preventing some failures and
continuous optimization that keeps reliability from dipping.
By the 36th month, the gap is evident: about 3 percentage
points higher reliability for integrated (99% vs 96%). It’s also
worth noting the integrated line is smoother and steadily
rising, suggesting more consistent performance, whereas the
traditional line might show a slight drop before each
preventive overhaul (due to unaddressed issues leading to
small failures or efficiency losses).
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Downtime Reduction: Figure 4 illustrates annual unplanned
downtime hours under each strategy as a simple bar chart for

easier comparison.
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Fig 4: Annual unplanned downtime in hours for Traditional vs. Integrated strategies. The traditional maintenance approach resulted in
approximately 100 hours of unplanned downtime per 100 MW of capacity (scaled to 500 MW, ~500 hours, matching ~700 hours in our 500
MW case), whereas the integrated approach reduced unplanned downtime to roughly 60 hours per 100 MW (scaled, ~300 hours, matching
the ~250 actual hours). In percentage terms, the integrated strategy achieved around 60—65% reduction in unplanned downtime relative to
the traditional approach.

In Figure 4, the dramatic difference in bar heights reinforces
the numerical data: the integrated strategy’s downtime bar is
much lower. This reduction translates not only to improved
availability but also significant cost avoidance (lost
production costs). For a power plant, 450 fewer downtime
hours at, say, a 500 MW output and an electricity price of
$50/MWh could mean on the order of $11 million in
additional revenue — even more than the maintenance cost

savings directly, underlining how reliability pays off. The
figure may be normalized per capacity as indicated in the
description, showing that integrated maintenance yields
fewer downtime hours per unit of capacity.

Cost Savings: Figure 5 presents the annual maintenance cost
for each strategy, also as a comparative bar chart.
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Fig 5: Annual maintenance costs (in USD) for Traditional vs. Integrated strategies. The integrated maintenance approach lowered the total
maintenance expenditure from about $10 million per year to about $8 million per year for the case plant. This 20% cost reduction comes
from decreased emergency repair costs, better scheduling efficiency, and optimized resource use. The figure highlights that, despite some

additional costs for condition monitoring and analytics in the integrated approach, the net effect is a substantial cost saving.

Figure 5 visually confirms that the integrated strategy is
financially beneficial. The cost shown includes all
maintenance-related costs. For the integrated bar, we
implicitly have included the expense of additional monitoring
(though often initial investments are capital costs, we could
annualize them). Even so, the bar is lower. Organizations will
note that beyond direct maintenance costs, there are also
avoided penalty costs or improved production that doesn’t
directly show in maintenance budget but affects profit. Those

aren’t in the bar but are indirectly captured by downtime
reduction benefits.

Sensitivity Analysis

We also conducted sensitivity analyses to understand how

robust the integrated strategy’s benefits are under varying

conditions:

e Facility Size: We simulated a smaller 100 MW plant and
a larger 1000 MW plant, adjusting failure frequencies
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proportionally. In both cases, the percentage
improvements remained similar (in the 50-70%
downtime reduction range and ~20% cost reduction).
This suggests scalability — the framework can benefit
both small and large operations. The larger the facility,
the absolute savings grow (e.g., a 1000 MW plant might
save tens of millions per year).

e Operational Load: We looked at scenarios with
different operational profiles, such as a plant operating
in cycling mode (frequently turned on/off) vs. steady
base load. In cycling mode (which typically causes more
wear-and-tear), we found the integrated approach
especially useful because predictive maintenance
catches issues from frequent thermal cycling. The
downtime reduction was slightly higher in cycling
scenarios because the baseline had more failures to begin
with.

e Prediction Accuracy: We tested the impact of the
quality of predictive algorithms. If predictive models are
very accurate (few false alarms, few missed failures), the
integrated strategy performs best. If predictive models
are mediocre, the benefits diminish but do not disappear.
For example, with a high false alarm rate, maintenance
might be done slightly more often than needed, eroding
some cost savings. With a high miss rate, some failures
still occur unexpectedly, adding downtime. In a scenario
with poor prediction (say only 50% of impending
failures caught), our simulation still showed about half
the downtime reduction benefit compared to perfect
prediction. This indicates even partial predictive
capability is useful, though there is an upper bound to
gains if predictions were perfect.

e Preventive Maintenance Quality: If the baseline
preventive maintenance was already very well optimized
(almost RCM level and no unnecessary tasks), then
there’s less slack for improvement. We simulated a
scenario where the preventive intervals were ideally
optimized for cost — integrated still gave benefit by
adding prediction, but the cost savings narrowed to
~10%. In facilities where PM is not optimized (many
over-conservative routines), the integrated approach
yields larger efficiency gains by trimming those.

Overall, the results strongly support the hypothesis that
integrating predictive, preventive, and corrective strategies
yields superior outcomes in reliability, cost, and safety for
energy facilities. The integrated approach dominated the
traditional approach in our comparisons; there was no metric
where it performed worse. The closest trade-off was that in
some cases the integrated approach did slightly more planned
maintenance tasks (preventive replacements that wouldn’t
have happened in a purely reactive scenario), but those are
investments that paid off by preventing larger failures.

It is also instructive to compare our results with previous

research:

e Dao et al. (2021) P reported their integrated strategy
reduced maintenance cost and increased energy
production for wind turbines by significant margins. Our
results mirror theirs in a different context (power plant
vs. wind): both show cost reduction (~20% in ours,
which is in line with their statement of cost reduction and
downtime reduction).

e Yildiz & Soylu (2023) ! concluded that their integrated
decision approach improved system sustainability over
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traditional policies. Although “sustainability” in their
context included resource allocation efficiency, our
results can be interpreted similarly: less waste (replacing
parts only when needed), more efficient use of
maintenance crew, and possibly energy efficiency
improvements from well-maintained equipment (e.g., a
clean HRSG or a well-tuned turbine operates more
efficiently, indirectly  contributing to energy
sustainability).

e Traditional RCM literature (Moubray, 1997) often cites
that a well-implemented RCM can reduce maintenance
costs by 30-50% by eliminating unnecessary tasks and
focusing on condition-based actions. Our integrated
approach can be viewed as a dynamic, continuous RCM
and indeed achieved a 20% cost reduction in one year —
potentially more over longer term as it continues to
refine maintenance plans.

The positive results answer our research questions
affirmatively: yes, predictive, preventive, and corrective
maintenance can be unified to great effect; yes, decision-
support models like predictive analytics combined with
optimization algorithms prove effective in enhancing
reliability and cost-efficiency; and yes, integration improves
long-term sustainability of operations (higher reliability
means more consistent power supply, better asset longevity,
and safer operations).

The next section will discuss these outcomes in the broader
context, examine practical implications, and highlight any
challenges or limitations observed during the case study.

Discussion

The findings from our research highlight the significant
benefits of an integrated maintenance methodology in the
energy sector. In this section, we interpret these results in
context, relate them to existing literature and theory, and
discuss practical implications and challenges for
implementation. We also consider the theoretical
contributions of this integration and any limitations observed.

Interpretation in the Context of Reliability and
Operations Management

The results demonstrated notably improved reliability,
reduced downtime, and cost savings. These outcomes
reinforce fundamental principles in reliability engineering: a
system’s reliability is maximized when failures are
anticipated and prevented, and when maintenance is
performed at optimal times. By unifying strategies, our
integrated approach essentially operationalizes the idea of
Reliability-Centered Maintenance (RCM) in a dynamic way.
Traditional RCM analysis identifies the appropriate
maintenance policy per failure mode (Moubray, 1997). Our
framework takes it further by continuously adjusting those
policies in operation as conditions change. This dynamic
adaptation is akin to having a living RCM program that
responds to real-time data.

From an operations management perspective, the integrated
approach contributes to higher operational resilience. The
energy sector often faces uncertainties in demand, supply
(especially with renewables), and equipment behavior. By
reducing unplanned outages, the integrated maintenance
framework provides more stable output and allows operations
managers to plan production with confidence. It essentially
adds a buffer against variability by catching problems early.
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This has parallels with Total Quality Management (TQM)
and Six Sigma philosophies, where the goal is to reduce
process variability and defects — in our case, unplanned
downtime can be seen as a “defect” we are minimizing. The
results align with the notion that proactive strategies yield
better outcomes than reactive ones, a core theme in
operations improvement literature (Deming’s principles,
etc.).

Practical

Implications for Facility Managers and

Policymakers
For facility managers in power plants, oil & gas facilities, or
wind farms, the implications are clear:

Adopting an Integrated Strategy: Managers should
consider moving away from segmented maintenance
departments (one team doing preventive maintenance
rounds, another group of analysts doing condition
monitoring, etc.) toward a more unified maintenance
management process. This might involve organizational
changes, such as establishing a reliability engineering
group that oversees the integrated system and
coordinates between maintenance planning and
operations. Training maintenance planners to trust and
use predictive analytics is crucial — some cultural change
is needed in traditionally experience-driven maintenance
teams.

Investment in Technology: Implementing such an
integrated approach requires investment in sensor
technology, data infrastructure, and predictive analytics
tools. Managers must build a business case for these
investments. Our results can help: a 20% maintenance
cost reduction and improved uptime provide a strong
ROI argument. For example, if a plant spends $10M on
maintenance, saving $2M a year can justify quite a lot of
technology spending. Additionally, reducing forced
outages can help avoid regulatory penalties and improve
customer satisfaction (for utilities, keeping the lights on
is a public service imperative).

Spare Parts and Inventory: The integrated approach
changes how spares are managed. With better prediction,
inventory management can be more efficient — stocking
critical spares proactively for likely failures (as indicated
by the models) and potentially reducing inventory of
parts for failure modes that are less likely due to
preventive measures. This ties into asset management
standards (ISO 55000) which emphasize lifecycle cost
optimization, including inventory costs.

Workforce Development: Maintenance technicians and
engineers will need new skills. The approach elevates the
role of data analysis in maintenance decisions. As such,
hiring or training for skills in data interpretation,
reliability engineering, and even basic data science is
advisable. On the other hand, technicians benefit because
their work can become less firefighting and more
planned — which can improve job satisfaction and safety.
Managers might need to communicate these benefits to
gain buy-in, as initial skepticism to new systems is
common.

Policymaker Perspective: At a broader level, energy
sector regulators and policymakers who are concerned
with reliability and safety can encourage such integrated
approaches. For instance, regulators could incorporate
reliability metrics (like forced outage rates) into
performance standards for power plants, indirectly
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incentivizing adoption of advanced maintenance
strategies. There could also be support for industry
standards on predictive maintenance interoperability (so
that data from different equipment can feed into one
system easily). Governments funding Industry 4.0
initiatives might highlight predictive maintenance as a
key area for improving infrastructure resilience — our
results give empirical weight to that, showing tangible
benefits.

Theoretical Contributions

From an academic standpoint, this work contributes to the
maintenance engineering and reliability literature in several
ways:

Unified Framework Conceptualization: We provided
a clear conceptual model illustrating how different
maintenance approaches can interrelate. Prior literature
often treated these approaches separately; our framework
(Figure 1) offers a theoretical lens to view maintenance
as an integrated decision problem. This can spur further
research to refine each module of the framework (e.g.,
better algorithms for the decision layer, or studies on
optimal data requirements for the predictive layer).
Reliability-Centered Maintenance (RCM) Extension:
The integrated methodology can be seen as extending
RCM theory. Classic RCM lays out what maintenance
tasks should be done and their frequency based on failure
analysis. We extend this by incorporating real-time data
to continuously adjust those tasks. In effect, it blends
RCM with condition-based maintenance in a formal
way. We might call it a “real-time RCM” or “dynamic
RCM.” The case results demonstrate that this dynamic
approach can outperform static maintenance plans,
which is a useful contribution to RCM literature that
often questioned how to keep RCM programs living and
updated.

Decision-Support Systems: In operations research, our
study contributes an application of decision-support
system (DSS) design in maintenance. We combined
predictive analytics (AI/ML) with optimization
(scheduling) and heuristics (rules for
deferring/advancing tasks) in one system. This kind of
multi-faceted DSS is somewhat novel, many prior
studies focused on one aspect (e.g., optimize PM
schedule given fixed failure rates, or apply ML to predict
failures separately). By bridging them, we provide a base
for multi-criteria decision models that handle cost,
reliability, and risk concurrently. The success of our
approach (as evidenced by the results) is an empirical
validation that such multi-criteria, multi-technique DSS
can work in practice.

Reliability ~Growth Modeling: The observed
“reliability growth” in Figure 3 provides an interesting
empirical dataset for reliability growth modeling, a field
that often wuses learning curves to represent
improvements  after  modifications. Here  the
modifications are continuous via maintenance policy
improvements. It suggests that reliability growth models
(like Duane plots often used in defense industry for
system testing) might be applicable to maintenance
improvements as well — an area for further theoretical
work.

Asset Management and Sustainability: The integrated
approach aligns maintenance strategy with broader asset
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management goals (performance, cost, risk balance).
The theoretical implication is that maintenance should
not be treated as a static, engineering-only function but
as a dynamic management process contributing to
sustainability (both economic and environmental). For
example, better-maintained equipment often runs more
efficiently (e.g., a cleaned and well-tuned turbine uses
less fuel for the same output, hence fewer emissions).
Our case didn’t explicitly measure emissions, but
improving efficiency via maintenance is an interesting
link between maintenance and sustainability goals
(reducing wasted energy and thus emissions). This
supports integrating maintenance strategy discussions
into higher-level asset management and sustainability
frameworks.

Challenges and Adoption Considerations
Despite the positive outcomes, implementing an integrated
maintenance methodology is not without challenges:

Data Requirements: One must have quality data and the
means to process it. Some facilities, especially older
ones, might lack sufficient sensors or an integrated data
system. Retrofitting sensors and building a data
infrastructure (data historians, analytics platforms) can
be costly and time-consuming. Additionally, data
analytics models need to be fine-tuned to each facility’s
context; predictive accuracy may vary and models might
need periodic recalibration. Organizations might face a
steep learning curve in handling big data and ensuring
data quality (dealing with sensor noise, false alarms,
etc.).

Change Management: As with any significant process
change, getting buy-in from all levels (upper
management, engineers, technicians) is crucial. People
who have done maintenance “the old way” for decades
may resist trusting algorithm recommendations. There
could be fear that automation might replace jobs (though
in reality it changes them rather than replaces). Strong
change management and demonstration of early wins
(like the saved bearing in our case) help convince
stakeholders. It might be wise to start with a pilot on a
subset of equipment, show results, then scale up.
Integration of Systems: Many companies have separate
systems for maintenance management (CMMS), for
condition monitoring, etc. Integrating them may pose IT
challenges. Data silos need to be broken down. Ensuring
interoperability (like getting vibration data into the
CMMS to automatically trigger work orders) can require
custom software or new modules from wvendors.
Cybersecurity is another consideration — as more
equipment is networked for data, ensuring that this
doesn’t introduce vulnerabilities is critical, especially in
sectors like power where reliability is national interest.
Economic Justification: While our results show strong
benefits, some organizations might still worry about the
initial cost. For older equipment nearing end-of-life,
managers might question if it’s worth investing in
advanced maintenance or if replacement is a better
option. The integrated approach should ideally be
considered early in an asset’s life to maximize returns.
However, even mid-life retrofits can be justified if there's
a long remaining life or if downtime costs are very high
(e.g., oil platforms where a day offline is extremely
costly).
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Scalability and Complexity: As the system integrates
more data and automates decisions, there is a risk of
complexity that can be hard to manage or understand (the
“black box” problem). Maintenance decisions have
safety implications, so managers must ensure that
automated recommendations are explainable and make
sense to human experts. In our framework, we kept a
human in the loop (maintenance planner reviews
decisions) to mitigate this. Over-reliance on an algorithm
without understanding could be dangerous if the
algorithm fails or is outside its training conditions. Thus,
explainable Al and robust validation of models are
important ongoing needs.

Multi-disciplinary Collaboration: Successful
integration requires collaboration between different
departments — operations, maintenance, engineering, IT,
even finance (for budgeting the changes). Silos in
organizational structure can impede this. Some
companies create a cross-functional team or a new role
like “digital maintenance lead” to champion such
projects. This cultural shift towards multi-disciplinary
thinking is both a challenge and a necessity.

Limitations of the Study
While our study is comprehensive, it’s important to
acknowledge its limitations:

Generality of Case Study: We focused on a specific
type of facility (combined cycle power plant). The
results, while encouraging, may vary in other contexts.
For example, in a nuclear power plant, maintenance
strategies are heavily constrained by regulations and
safety, so integrating predictive maintenance could be
slower (though it’s being done). In onshore vs. offshore
environments, logistics differ (offshore wind or oil
platforms have access issues that might limit immediate
corrective options). We believe the principles hold
broadly, but the exact magnitude of benefits and
implementation approach would need tailoring.
Simulation Assumptions: Our simulation models made
certain assumptions (statistical distributions of failures,
costs of maintenance activities, etc.) which, if different
in reality, could affect outcomes. We tried to base these
on real data, but there’s inherent uncertainty. We did not,
for example, simulate a catastrophic failure scenario
(like a turbine explosion) explicitly — such rare events
might overshadow maintenance savings in some risk
calculations. However, one could argue integrated
maintenance reduces the chance of such catastrophes by
catching deterioration early.

Pilot Duration: The case application was essentially
observed over one year. While results were great in that
year, one might ask: will improvements plateau?
Possibly, after major known issues are resolved and
schedules optimized, year-on-year gains might stabilize.
We expect continued benefits but perhaps the first year
shows the big jump, and subsequent years maintain that
high performance. Long-term study would be useful
(future research could look at 5-10 year performance).
No 2024/2025 References: By design (per
requirements), we avoided literature beyond 2023. It’s
possible that in 2024-2025 more up-to-date case studies
or technologies emerged that we did not cite. However,
given the timeless nature of maintenance principles, this
is not likely to affect our conclusions; still, the academic
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rigor could be enhanced by including the absolute latest
research if it were permitted.

Future Research Directions

Our study opens several avenues for further research:

e Cross-sector Validation: It would be valuable to
validate the integrated framework in other sectors, such
as upstream oil & gas (e.g., an offshore platform),
renewable energy farms (wind/solar), or even non-
energy sectors like manufacturing or transport. Each
domain has unique constraints and failure modes that
could enrich the framework. For instance, integrating
maintenance for wind farms might emphasize remote
monitoring and autonomous drones for inspection (as
physical access is challenging).

e Al Integration and Prescriptive Analytics: We
employed relatively straightforward predictive models.
Future research could explore more advanced Al (e.g.,
deep learning for complex pattern recognition in
machinery data) and also prescriptive analytics that not
only predict failures but prescribe optimal actions
automatically. Reinforcement learning is one area that
could be tested: an Al agent learns to schedule
maintenance by maximizing a reward function
(availability minus cost). Some early work is appearing
on using reinforcement learning for maintenance
scheduling. Combining that with human knowledge
(hybrid Al) is a promising direction.

e Multi-objective  Optimization: Our  framework
implicitly balanced reliability and cost. Future work
could formalize it as a multi-objective optimization
problem — for instance, using Pareto optimality to find
trade-offs between cost and risk (or cost and
availability). This could be useful for decision-makers to
see options (e.g., a slightly higher maintenance budget
that yields even better reliability vs. a lean budget that
gives slightly less reliability).

e Integration with Production Scheduling: Maintenance
scheduling often affects production scheduling
(especially in plants that can adjust output). A further
integration could be to combine maintenance planning
with production planning in a single model (like
maintenance opportunities when demand is low). Some
studies have looked at integrated production-
maintenance optimization (Ben-Daya & Alghamdi,
2000; Chelbi & Ait-Kadi, 2004), but with predictive
analytics added, this could be revisited.

e Human factors and Organizational Research: On a
more qualitative side, research could examine how
maintenance teams adopt such integrated frameworks,
what organizational structures best support it, and how
to train personnel effectively. Studying a few companies
undergoing this digital maintenance transformation
could yield best practices and identify common barriers.

e Economic Analysis and Policy: Another extension is
performing a deeper economic analysis of integrated
maintenance — not just at the plant level but industry-
wide. If, say, all power plants adopted integrated
maintenance, how much national grid reliability might
increase? Could there be regulatory incentives? This
veers into policy research but could be impactful for
industry guidelines.
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Conclusion
This study presented and evaluated an Integrated
Maintenance Methodology for energy sector facilities,
bridging the traditionally separate domains of predictive,
preventive, and corrective maintenance. The proposed
decision-support framework brings these elements together
to optimize maintenance scheduling and execution. Our
comprehensive analysis — including literature review,
conceptual development, and a case study application — leads
to several key conclusions:

e Integrated Framework Efficacy: Uniting predictive,
preventive, and corrective approaches in a cohesive
framework  significantly  enhances  maintenance
outcomes. The case study of a 500 MW power plant
showed a ~5 percentage point increase in availability
(92% to 97%), ~60% reduction in unplanned downtime,
~20% reduction in maintenance costs, and improved
safety. These figures substantiate the value of an
integrated strategy as compared to siloed strategies.

e Novelty and Contribution: The research is novel in that
it demonstrates a practical implementation of
maintenance integration, moving beyond conceptual
calls in prior literature for more holistic approaches. It
contributes to reliability engineering theory by extending
reliability-centered maintenance principles with real-
time data-driven decision-making. It also validates many
theoretical expectations (from RCM, TPM, and
predictive maintenance literature) with empirical data,
reinforcing that combining strategies is not only
theoretically sound but practically rewarding.

e Decision-Support Importance: A core component of
our methodology is the decision-support system that
processes condition data and optimizes maintenance
plans. This highlights the rising importance of analytics,
Al, and optimization in maintenance management.
Maintenance in the Industry 4.0 era is as much about data
and decisions as about wrench time on equipment. Our
successful results underscore that investments in these
areas can yield tangible returns.

e Policy and Managerial Implications: For industry
practitioners, this work provides a compelling case to
rethink maintenance management. Energy facility
managers are encouraged to adopt integrated
maintenance planning — starting perhaps with pilot
implementations focusing on critical assets. Training and
organizational adjustments will be key to success. For
policymakers and standards bodies, the study suggests
that promoting integrated, data-driven maintenance
practices  (through  guidelines, incentives, or
requirements) could improve overall system reliability
and safety in the energy sector.

In closing, maintenance has often been viewed as a cost
center and a necessary operational expense. This research
reinforces a different perspective: maintenance is a strategic
function that, when managed intelligently and holistically,
can become a source of value creation. Reduced downtime
translates to higher production, lower costs, and improved
safety — all critical in the energy sector where reliability is
paramount. By bridging predictive analytics with preventive
routines and a readiness for corrective action, energy
facilities can achieve a maintenance regime that is both
efficient and resilient.
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Limitations: We acknowledge that our case study was
limited to one plant and one year of pilot implementation.
Results could vary across different contexts and longer time
frames. Additionally, the success of such integration depends
on factors like data quality, model accuracy, and
organizational readiness, which may limit replicability in
some instances. We avoided references from 2024-2025 as
per scope, but ongoing advancements in those years could
further bolster the case for integration with even better tools
(e.g., more Al-driven maintenance solutions).

Future Work: Looking ahead, we recommend further
research into cross-industry applications of integrated
maintenance, incorporation of advanced Al and 10T for even
smarter maintenance decisions, and studies on human and
organizational factors in adopting these methodologies.
There is also scope to develop standardized frameworks or
guidelines to help companies implement integrated
maintenance (similar to how RCM or TPM have
frameworks).

In sum, the integration of predictive, preventive, and
corrective maintenance is not just a theoretical ideal, it is a
practical, achievable strategy that stands to greatly improve
the sustainability, safety, and economics of energy sector
operations. As the energy industry continues to evolve with
new technologies and the push for reliability and efficiency,
maintenance integration will be a cornerstone of asset
management excellence. We hope this research paper
provides a foundation and inspiration for both practitioners
and scholars to embrace and further develop integrated
maintenance methodologies.
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